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Abstract

Based on a generalized variational principle for magneto-thermo-elasticity, a theoretical model is proposed to des-

cribe the coupled magneto-thermo-elastic interaction of soft ferromagnetic plates. Using the linearized theory of

magneto-elasticity and perturbation technique, we analyze the magneto-elastic and magneto-thermo-elastic instability

of simply supported ferromagnetic plates subjected to thermal and magnetic loadings. A coupled nonlinear finite

element procedure is developed next to simulate the magneto-thermo-elastic behavior of a ferromagnetic plate. The

effects of thermal and magnetic fields on the magneto-thermo-elastic bending and buckling is investigated in some

detail.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The classical thermo-elasticity of thin plates has been one of the most interesting fields of research (i.e.

Sokolnikoff, 1939; Biot, 1956; Green and Lindsay, 1972). Recently, some investigators gave their attention

to the magneto-thermo-elastic interaction in ferromagnetic plates as more ferromagnetic materials were

used in technological applications, such as the first wall structure of thermo-nuclear reactors, electro-

magnetic energy storage devices and ferromagnetic shields, etc. (Lee et al., 1993). Paria (1967) and Parkus

(1972) are the pioneers to study the field of magneto-thermo-elastic interaction. Misra et al. (1991) studied

the stress in a solid cylinder of electroconductive medium with an axial magnetic field and a ramp-type

thermal field. Banerjee and Roychoudhuri (1997) and Roychoudhuri and Banerjee (1998) investigated the
magneto-thermo-elastic behavior of an infinite elastic and viscoelastic cylinder under a periodic loading. It

should be noted that most of these studies are limited to a nonmagnetized medium.
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When the magnetization of medium is considered, the analysis of multi-field coupling becomes more

complex. Hutter and Pao (1974) developed the general theory of magneto-thermo-elastic bodies in applied

magnetic fields and further reduced the basic equations through linearization. With the aid of the method of

rational mechanics, Abd-alla and Maugin (1990) and Massalas (1991) respectively developed the equations
of nonlinear magneto-thermo-elasticity for ferromagnetic media. However, in most of the aforementioned

theories, the magnetic force arisen from the magnetization of a ferromagnetic medium is represented by the

Maxwell magnetic stress tensor. Zhou and Zheng (1997) pointed out that there exists a configuration for

which the usual Maxwell stress tensor may not be adequate for describing the magnetic force system of a

ferromagnetic medium subjected to complex applied magnetic fields for which both the positive and nega-

tive magnetic stiffness manifest. They suggested a magneto-elastic model using the generalized variational

principle to remedy the problem.

In this paper, we expand the generalized variational principle for magneto-elasticity to study the mag-
neto-thermo-elastic interaction of soft ferromagnetic bodies under the action of applied thermal and

magnetic fields. This expansion is achieved by using the magnetic energy and thermo-elastic free energy of

the soft ferromagnetic material. In contrast to existing models (e.g. Abd-alla and Maugin, 1990; Massalas,

1991) which are based on Maxwell magnetic stress tensor, a new theoretical model for magneto-thermo-

elastic interaction is proposed for soft ferromagnetic plates by taking geometrical nonlinearity and tem-

perature-dependent magnetization into account. By means of the magnetic field perturbation technique and

the finite element method, we analyze the interaction behavior of ferromagnetic plates in transverse

and oblique magnetic fields. The magneto-thermo-elastic bending, buckling and post-buckling of the soft
ferromagnetic plates are quantitatively investigated, and the effects of magnetic incident angle and tem-

perature on the instability of the plates are examined in some detail.
2. The generalized energy functional

Consider an isotropic, homogeneous, linear magneto-elastic plate made of soft ferromagnetic material in

both a stationary applied magnetic field B0 and a thermal field T ðx; y; zÞ. The geometrical parameters of the
plate are denoted respectively as the length a, the width b and the thickness h (see Fig. 1). Considering the

dependence of the magnetic susceptibility or permeability on the thermal field (less than Curie temperature)

and assuming that there is no electric field, charge distribution, or conduction current, we can write the

magnetic constitutive relation for linear magnetic materials
Mþ ¼ vðT ÞHþ; Bþ ¼ l0lrðT ÞHþ in Xþ ð1Þ

M� ¼ 0; B� ¼ l0H
� in X� ð2Þ
where Xþ and X� represent the inside and outside regions of deformed plate respectively; Mþ and M� are

respectively the magnetization vectors inside and outside the ferromagnetic medium; Bþ;B� and Hþ;H�

are respectively the inside and outside magnetic induction vectors and magnetic field vectors; l0 and lr are

the magnetic permeability of vacuum and the relative permeability of ferromagnetic medium respectively;

v is the susceptibility of the ferromagnetic medium and v ¼ lr � 1.

Taking u ¼ fu; v;wg as the displacement vector of the plate and S0 as a closed surface far away from the

region occupied by the ferromagnetic plate, we write the magnetic energy functional for the system as

follows:
Pemf/; ug ¼ 1

2

Z
XþðuÞ

l0lrðr/þÞ2 dvþ 1

2

Z
X�ðuÞ

l0ðr/�Þ2 dvþ
Z
S0

n � B0/
� ds ð3Þ



 

Fig. 1. The scheme of rectangular ferromagnetic plate.
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in which / is the magnetic scalar potential which satisfies �r/ ¼ H; and r ¼ o=oxiþ o=oyjþ o=ozk is the

gradient operator.

With the assumptions that (i) all the elastic parameters are constants independent of the thermal field, (ii)

there are no external forces acting on the ferromagnetic plate, and (iii) the von Karman theory of geo-

metrically nonlinear thin plate may be used, the displacements of the thin plate can be expressed by the mid-

plane deformation in the following forms:
u1 ¼ u� z
ow
ox

; u2 ¼ v� z
ow
oy

; u3 ¼ w ð4Þ
and the relations between the displacements and strains are given by
ex ¼
ou1
ox

þ 1

2

ou3
ox

� �2

¼ ex � zvx ð5aÞ

ey ¼
ou2
oy

þ 1

2

ou3
oy

� �2

¼ ey � zvy ð5bÞ

exy ¼
1

2

ou1
oy

�
þ ou2

ox
þ ou3

ox
ou3
oy

�
¼ exy � zvxy ð5cÞ
where
ex ¼
ou
ox

þ 1

2

ow
ox

� �2

; ey ¼
ov
oy

þ 1

2

ow
oy

� �2

; exy ¼
1

2

ou
oy

�
þ ov
ox

þ ow
ox

ow
oy

�
ð6aÞ

vx ¼
o2w
ox2

; vy ¼
o2w
oy2

; vxy ¼
o2w
oxoy

ð6bÞ
Thus, the functional of the thermo-elastic free energy functional of the system is given by
Pmef/; ug ¼ P1
me þP2

me þP3
me ð7Þ
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in which
P1
me ¼

1

2

Z
Sþ

C½ðex þ eyÞ2 þ 2ð1� mÞðe2xy � exeyÞ�ds ð8aÞ

P2
me ¼

1

2

Z
Sþ

D½ðvx þ vyÞ
2 þ 2ð1� mÞðv2xy � vxvyÞ�ds ð8bÞ

P3
me ¼ � aY

1� m

Z
Sþ
ðex þ eyÞ

Z h=2

�h=2
ðT

"
� T0Þdz

#
dsþ aY

1� m

Z
Sþ
ðvx þ vyÞ

Z h=2

�h=2
ðT

"
� T0Þzdz

#
ds

� CE

2T0

�
þ a2Y ð1þ mÞ
ð1� mÞð1� 2mÞ

� Z
Sþ

Z h=2

�h=2
ðT � T0Þ2 dzds ð8cÞ
Here, Y and m are respectively the Young�s modulus and the Poisson ratio; C ¼ Yh=ð1� m2Þ and

D ¼ Yh3=½12ð1� m2Þ� are the tensile and flexural rigidity of the thin plate, respectively; T0 is the reference

temperature; a is the coefficient of thermal expansion; CE denotes the specific heat capacity; Sþ denotes the

mid-plane of plate. By adding the magnetic energy functional and the thermo-elastic free energy, the total

generalized magneto-thermo-elastic energy functional of the system is obtained as follows:
Pf/; ug ¼ Pemf/; ug þPmef/; ug ð9Þ

With the stationary thermal field, the functional of potential energy of heat flux can be expressed as
PthfTg ¼
Z
Xþ

1

2
kðrT Þ2

�
� qhT T

�
dv�

Z
SP

ðk1�qq
�

� k2HTT ÞT � 1

2
k2HTT 2

�
ds ð10Þ
where k is the thermal conductivity of ferromagnetic material; q and hT represent the material mass density

and heat source density, respectively; HT is the radiative coefficient; k1 and k2 are respectively the factors of

heat flux and heat exchange on the boundary SP ; �qq and T are respectively the heat flux and environment
temperature on SP .
3. The governing equations

Let d/ be the admissible variation on magnetic potential function of the system. Then
d/ ¼ d/þ ¼ d/� on S ð11Þ

where S denotes the enclosed surface of the plate regionXþ. From d/Pf/; ug ¼ 0 and the arbitrariness of d/,
one can obtain the governing equations and boundary conditions for the ferromagnetic body as follows:
r2/þ ¼ 0 in XþðuÞ ð12aÞ

r2/� ¼ 0 in X�ðuÞ ð12bÞ

/þ ¼ /�; lr

o/þ

on
¼ o/�

on
on S ð12cÞ

�r/� ¼ B0

l0

on S0 ð12dÞ
Analogously, we take du as the admissible variation on the displacement of the plate and let

duPf/; ug ¼ 0. With the arbitrariness of du and the similar variational calculus procedure following Zhou
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and Zheng (1997), we get the equilibrium equations and boundary conditions for a geometrically nonlinear

ferromagnetic plate as follows:
oNx

ox
þ oNxy

oy
¼ 0;

oNxy

ox
þ oNy

oy
¼ 0 ð13aÞ

Dr2r2
wþ aY

1� m

Z h=2

�h=2
r2ðT � T0Þzdz� Nx

o2w
ox2

�
þ 2Nxy

o2w
oxoy

þ Ny
o2w
oy2

�
¼ qemz ðx; y; T Þ ð13bÞ
The corresponding boundary conditions are

(A) In-plane deformation:

(i) Movable boundary:
Nn ¼ 0 on C ð14aÞ
(ii) Immovable boundary:

un ¼ 0 on C ð14bÞ
(B) Bending deformation:

(i) Simply supported boundary:
w ¼ 0; Mn ¼ 0 on C ð15aÞ
(ii) Fixed boundary:

w ¼ 0;
ow
on

¼ 0 on C ð15bÞ

(iii) Free boundary:

Mn ¼ 0; Vn ¼ 0 on C ð15cÞ

where Mn and Vn are respectively the bending moment and shearing force on the boundary C with the

normal direction n; Nn and un denote the projections of the mid-plane internal force and displacement in the

normal direction n on C, respectively; r ¼ o=oxiþ o=oyj is the 2D gradient operator; Nx, Ny , Nxy and Mx,

My , Mxy represent membrane and bending stress resultants of the thin plate respectively and are defined by
Nx ¼ Cðex þ meyÞ �
aY
1� m

Z h=2

�h=2
ðT � T0Þdz ð16aÞ

Ny ¼ Cðey þ mexÞ �
aY
1� m

Z h=2

�h=2
ðT � T0Þdz ð16bÞ

Nxy ¼ Cð1� mÞexy ð16cÞ

Mx ¼ �Dðvx þ mvyÞ �
aY
1� m

Z h=2

�h=2
ðT � T0Þzdz ð17aÞ

My ¼ �Dðvy þ mvxÞ �
aY
1� m

Z h=2

�h=2
ðT � T0Þzdz ð17bÞ

Mxy ¼ �Dð1� mÞvxy ð17cÞ
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and the equivalent magnetic force exerted on the plate is given by
qemz ðx; y; T Þ ¼ l0vðT Þ
2

½lrðT ÞðHþ
n Þ

2 � ðHþ
s Þ

2�z¼h=2
z¼�h=2 ð18Þ
where Hþ
n and Hþ

s represent respectively the normal and tangential components of Hþ on the surface S of

the ferromagnetic plate, which are related to the deformation of the plate and can be regarded as a

transformation from the magnetic energy to the mechanical energy of the system.

Here, it should be pointed out that, in our derivation process of this section, the effects of thermal flux

induced by magnetic field, temperature dependency of magnetic properties, and thermo-elastic coupling are

neglected with stationary magnetic and thermal fields assumed. Consequently, we can get the governing
equations directly from the potential energy functional of heat flux. Let dT be the admissible variation on

the thermal functional of the system. Then, we have
dT ¼ 0 on ST ð19Þ

Therefore, from dPthfTg ¼ 0 and the arbitrariness of dT , the governing equation of heat conduction and

boundary condition can be obtained as follows:
r2T þ qhT ¼ 0 in Xþ ð20aÞ

k
oT
on

¼ k1�qqþ k2HT ðT � T Þ on SP ð20bÞ
4. Magneto-thermo-elastic buckling of ferromagnetic plates

The magneto-elastic buckling phenomenon of a soft ferromagnetic plate in transverse magnetic field

(h ¼ 0�) is known to us due to many investigations (e.g. Moon and Pao, 1968; Moon, 1984; Zhou et al.,

1995; Lee, 1996; Zhou and Miya, 1998; Zheng et al., 1999). Here, we pay our attention to the magneto-
thermo-elastic buckling of simply supported rectangular ferromagnetic plates under both the thermal and

magnetic fields. The following analyses are based on the model developed in the previous section. For the

sake of simplicity, the usual linear and infinitesimal strain theory for the ferromagnetic plate is adopted and

the magnetic susceptibility v is assumed independent of the thermal field. We also assume that the applied

thermal and magnetic fields are stationary and uniform. The four edges of the plate are assumed to be fixed.

By solving Eq. (13a), one can easily get the membrane stress resultants arisen from the thermal field as

follows:
Nx ¼ � aYTh
1� m

; Ny ¼ � aYTh
1� m

; Nxy ¼ 0 ð21Þ
Note that we take reference temperature T0 ¼ 0 for convenience.

A linearized theory (Pao and Yeh, 1973) is adopted for the distribution of the magnetic field inside and

outside of the ferromagnetic plate. The magnetic field is divided into two parts: the rigid body state and the

perturbed state. The former represents the magneto-statics solution for the undeformed plate and the latter

is an added correction due to a small deformation of the plate, that is
Hþ ¼ Hþ
0 þ hþ ¼ �rUþ � r/þ in XþðuÞ ð22aÞ

H� ¼ H�
0 þ h� ¼ �rU� � r/� in X�ðuÞ ð22bÞ
By considering the geometric characteristics of a thin plate (i.e. h=a � 1, h=b � 1) and neglecting the

effect of the boundary magnetic field, we have
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r2Uþ ¼ 0 in Xþðu ¼ 0Þ ð23aÞ

r2U� ¼ 0 in X�ðu ¼ 0Þ ð23bÞ

Uþ ¼ U�; lr

oUþ

oz
¼ oU�

oz
on z ¼ �h=2 ð23cÞ

�rU� ¼ B0

l0

on S0 or at 1 ð23dÞ
for the rigid body state and
r2/þ ¼ 0 in XþðuÞ ð24aÞ

r2/� ¼ 0 in X�ðuÞ ð24bÞ

lr

o/þ

oz
¼ o/�

oz
on z ¼ �h=2 ð24cÞ

o/þ

ox
þ Hþ

0z

ow
ox

¼ o/�

ox
þ H�

0z

ow
ox

on z ¼ �h=2 ð24dÞ

o/þ

oy
þ Hþ

0z

ow
oy

¼ o/�

oy
þ H�

0z

ow
oy

on z ¼ �h=2 ð24eÞ

/� ! 0 on S0 or at 1 ð24fÞ
for the perturbed state. As a consequence of Eqs. (23a)–(23d), we have
Hþ
0 ¼ �rUþ ¼ B0

l0lr

in Xþðu ¼ 0Þ ð25aÞ

H�
0 ¼ �rU� ¼ B0

l0

in X�ðu ¼ 0Þ ð25bÞ
As for the plate deflection, a solution of the following form is chosen:
w ¼
X
m

X
n

Amn sin
mpx
a

sin
npy
b

ð26Þ
where m and n denote positive integers, and Amn is the coefficient of deflection amplitude. Upon substitution

of Eqs. (25) and (26) into the corresponding boundary conditions of Eqs. (24d) and (24e), the distribution

of the perturbed fields are given by
hþ ¼ �r/þ

¼ B0v
l0lr

X
m

X
n

Amn

Dmn

mp
a

cos
mpx
a

sin
npy
b

coshðkmnzÞiþ
B0v
l0lr

X
m

X
n

Amn

Dmn

np
b

sin
mpx
a

cos
npy
b

� coshðkmnzÞjþ
B0v
l0lr

X
m

X
n

kmnAmn

Dmn
sin

mpx
a

sin
npy
b

sinhðkmnzÞk ð27aÞ
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h� ¼ �r/�

¼ �B0v
l0

X
m

X
n

Amn

Dmn

mp
a

cos
mpx
a

sin
npy
b

sinh
kmnh
2

� �
ekmnðh=2�jzjÞi� B0v

l0

X
m

X
n

Amn

Dmn

np
b

� sin
mpx
a

cos
npy
b

sinh
kmnh
2

� �
ekmnðh=2�jzjÞj� B0v

l0

sgnðzÞ
X
m

X
n

kmnAmn

Dmn
sin

mpx
a

sin
npy
b

� sinh
kmnh
2

� �
ekmnðh=2�jzjÞk ð27bÞ
where sgnðzÞ is the sign function, and
kmn ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
a

� �2

þ n
b

� �2
r

; Dmn ¼ lr sinh
kmnh
2

þ cosh
kmnh
2

ð28Þ
After taking the magnetic fields distributions of Eqs. (25a), (25b), (27a), and (27b) into the equivalent

magnetic force of Eq. (18), we have
qemz ðx; yÞ ¼ 2B2
0v

2

l0lr

X
m

X
n

kmnAmn

Dmn
sinh

kmnh
2

sin
mpx
a

sin
npy
b

ð29Þ
The equilibrium equation of Eq. (13b), upon substituting Eqs. (21) and (29), is reduced to
X
m

X
n

Amn Dk4mn

�
� 2B2

0v
2kmn

l0lrDmn
sinh

kmnh
2

� aYTh
1� m

k2mn

�
sin

mpx
a

sin
npy
b

¼ 0 ð30Þ
It should be noted from the above equation that Amn ¼ 0 or w ¼ 0 when the applied magnetic field B0 and

thermal field T are small. This represents the unbending state as an equilibrium configuration for the

ferromagnetic plate. As the field B0 and/or T increase, however, there will be cases of Amn 6¼ 0 or w 6¼ 0

which represents the buckling of the plate.

Case I: T ¼ 0 and B0 6¼ 0. In this case, the ferromagnetic plate is placed in an applied magnetic field only.

From Eq. (30), we find
Dk4mn �
2B2

0v
2kmn

l0lrDmn
sinh

kmnh
2

¼ 0 ð31Þ
Thus, the critical magnetic field for magneto-elastic buckling (m ¼ n ¼ 1) is obtained as
B0cr ¼
l0lrD11p3

24ð1� m2Þv2 sinhðk11=2Þ

� �1=2
½1þ ða=bÞ2�3=4ða=hÞ�3=2 ð32Þ
Noting that the magnetic permeability of most soft ferromagnetic materials is very large (e.g., v > 104

for iron) and the assumption of thin plate
lr � v � 1; sinhðk11h=2Þ � k11h=2 � 1; coshðk11h=2Þ � 1 ð33Þ

Using the above relations, Eq. (32) is further reduced in nondimensional form
B	
cr ¼

B0crffiffiffiffiffiffiffiffi
l0Y

p ¼ p
2

p
6ð1� m2Þ

� �1=2
½1þ ða=bÞ2�3=4ða=hÞ�3=2 ð34Þ
which shows that the critical magnetic field B	
cr varies with )3/2 power of the geometric parameter a=h.

It agrees with the Moon and Pao (1968) and Dalamangas (1983).

Case II: T 6¼ 0 and B0 ¼ 0. In this case, the ferromagnetic plate is placed in an applied thermal field only.
From Eq. (30), we find
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Dk4mn �
aYT
1� m

k2mn ¼ 0 ð35Þ
and the critical value of thermal field (dimensionless) for the thermo-elastic buckling is obtained by
T 	
cr ¼ aTcr ¼

p2

12ð1þ mÞ ½1þ ða=bÞ2�ða=hÞ�2 ð36Þ
Case III: T 6¼ 0 and B0 6¼ 0. The ferromagnetic plate is placed in both the applied thermal field and

magnetic field. In this case, we obtain the effect of the thermal field on the critical magnetic field for
magneto-elastic buckling, and the effect of the magnetic field on the critical thermal field for thermo-elastic

buckling as follows:
B	
cr ¼

p3h3

24ð1� m2Þa3 �
phT 	

2ð1� mÞa

� �1=2
½1þ ða=bÞ2�1=4 ð37aÞ

T 	
cr ¼

p2

12ð1þ mÞ ½1þ ða=bÞ2�ða=hÞ�2 � 2ð1� mÞðB	Þ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ða=bÞ2

q a
h

ð37bÞ
and the characteristic curve of magneto-thermo-elastic buckling for the ferromagnetic plate as follows:
B	

B	
cr

� �2

þ T 	

T 	
cr

¼ 1 ð38Þ
where B	 and T 	 are the dimensionless variables of magnetic and thermal field, respectively. The corre-

sponding deflected configuration of the magneto-thermo-elastic buckling is expressed as
w ¼ A11 sin
px
a

sin
py
b

ð39Þ
The logarithmic curves for critical values of magneto-elastic and thermo-elastic buckling of the simply

supported plate are plotted as a function of the geometrical parameter a=h in Fig. 2(a) and (b) respectively.
 
 
 

 

The logarithmic curve for critical value vs. the geometric parameter a=h: (a) magneto-elastic buckling; (b) thermo-elastic

g.



 
 
 

 
 
 

Fig. 3. The buckling of magneto-elasticity and thermo-elasticity depending on thermal and magnetic field (a=b ¼ 1:0): (a) the effect of

T 	 on B	
cr; (b) the effect of B	 on T 	

cr.
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These show that the critical values for magneto-elastic buckling decrease with )3/2 power of the ratios

a=h, while those for thermo-elastic buckling decrease with )2 power of the ratios a=h. Fig. 3(a) shows

the effect of the thermal field on the magneto-elastic buckling while Fig. 3(b) shows the effect of magnetic

field on the thermo-elastic buckling. Fig. 4 presents further the characteristic curve of magneto-thermo-

elastic buckling where B	
cr and T 	

cr denote the critical magnetic and thermal field respectively for the plate

subjected to a magnetic or thermal field only. In the figure, the region enclosed by the characteristic

curve and the ordinate implies the stable region where the magneto-thermo-elastic buckling would not take
place.
   

Fig. 4. The characteristic curve of magneto-thermo-elastic buckling.



X. Wang et al. / International Journal of Solids and Structures 40 (2003) 6125–6142 6135
5. The finite element analysis

In general, it is not easy to obtain analytical solutions to a magneto-thermo-elastic problem with

combined fields since the field equations are strongly coupled and nonlinear due to the interactions among
the fields. The exact solution or quantitative analysis is limited to structures of simple geometry and simple

support conditions where the edge effect of magnetic field can be neglected. However, there are many

ferromagnetic structures of finite size with complex field configuration in engineering applications, thereby

necessitating a numerical means. In this section, we develop a numerical program based on the finite ele-

ment method to analyze the elastic, magnetic, and thermal field distributions of the plate. An iterative

method is employed to take care of the nonlinearities arisen from the field-structure interaction.
5.1. FEM formulation for magnetic field

Firstly, we will analyze the magnetic field distributions in regions Xþ and X� that are influenced by the

magnetization and deformation of the ferromagnetic plate. For a given deflected state of the ferromagnetic

plate, the magnetic field distribution (solution of Eqs. (12a)–(12d)) minimizes the magnetic-energy func-

tional Pemf/; ug for the ferromagnetic system. We discretize the 3D regions of Xþ and X� into finite

elements setting the mid-plane and the surface of the plate located on the surface of the elements. Here, we

adopt 20-node hexahedron elements and the corresponding shape function ½Nemðx; y; zÞ�e. For each element,

we have
/ðx; y; zÞ ¼ ½Nemðx; y; zÞ�e½U�e ð40Þ
where ½U�e is a column matrix which consists of the value of /ðx; y; zÞ on each node of the element e. Upon

substituting Eq. (40) into the discretized form of magnetic energy for the system, we have
Pemf/; ug ¼
X
e

1

2
½U�Te ½Kem�e½U�e �

X
e

½U�Te ½P�e ð41Þ
where ½Kem�e and ½P�e are respectively the magnetic stiffness matrix and the inhomogeneous term for element

e, and are expressed as
½Kem�e ¼
R
Xe
l0lr½rNem�Te ½rNem�e dv Xe 2 XþðuÞR

Xe
l0½rNem�Te ½rNem�e dv Xe 2 X�ðuÞ

(
ð42aÞ

½P�e ¼
R
Se
l0n � B0½Nem�Te ds Se 2 S0

0 Se 62 S0

�
ð42bÞ
From d/Pemfu;/g ¼ 0, one can get the algebraic equation for magnetic scalar potential in the form
½Kem�½U� ¼ ½P� ð43Þ

Here, ½Kem� is the global magnetic stiffness matrix; ½U� is a column matrix of the unknown nodal values of

the magnetic potential; ½P� is the column matrix or ‘‘force’’ vector related to the applied magnetic field on

S0. Since the region XþðuÞ represents the deformed plate and the magnetic permeability is a function of the

thermal field, it is obvious that
½Kem� ¼ ½Kemðu; T Þ� ð44Þ
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5.2. FEM formulation for thermal field

Here, we develop a finite element formulation to compute the thermal field. The heat conduction

equation together with the corresponding boundary conditions, Eqs. (20a) and (20b), constitute a
boundary-value problem that minimizes the potential functional of heat flux of the system. The magnetic

field elements in region Xþ can be taken as the thermal field elements with the temperature function instead

of the magnetic scalar potential as the unknown values at the nodes of each element. The temperature for

each element is given by
T ðx; y; zÞ ¼ ½Nthðx; y; zÞ�e½T�e ð45Þ

in which ½Nthðx; y; zÞ�e is the shape function of the thermal field element e; and ½T�e is the column matrix

which consists of the value of T ðx; y; zÞ at each node.

Substituting Eq. (45) into the discretized form of the thermal flux potential for the system leads to
PthfTg ¼ 1

2

X
e

½T�Te ½Kth
h �e½T�e �

X
e

½T�Te ½Qh�e �
1

2

X
e0

½T�Te ½Kth
s �e½T�e þ

X
e0

½T�Te ½Qs�e ð46Þ
where e and e0 represent the thermal field elements inside and on the boundary of the plate, respectively;

½Kth
h �e is the heat conduction stiffness matrix; ½Kth

s �e is the thermal stiffness matrix due to the heat exchange on

the boundary SP ; and ½Qh�e and ½Qs�e are respectively the inhomogeneous terms from the heat source

loading inside the plate and the heat flux and the heat exchange on the boundary. These matrices can be
written as follows:
½Kth
h �e ¼

Z
Xþ
e

k½rNth�T½rNth�dv ð47aÞ

½Kth
s �e ¼

Z
Se0

k2HT ½Nth�T½Nth�ds ð47bÞ

½Qh�e ¼
Z
Xþ
e

qhT ½Tth�T dv ð47cÞ

½Qs�e ¼
Z
Se

ðk1�qq� k2HTT Þ½Nth�T ds ð47dÞ
From dPthfTg ¼ 0, a matrix equation for the thermal field may be obtained as
½KthðuÞ�½T� ¼ ½QðuÞ� ð48Þ

where ½KthðuÞ� is the global heat conduction stiffness matrix; ½T� is the column matrix which consists of the

temperature values at the nodes; and ½QðuÞ� is the column matrix related to the heat source, heat flux and

heat exchange.
5.3. FEM formulation for plate

Taking the rectangular areas of the 3D hexahedron elements in the mid-plane of plates as the plate

elements, we can reduce the differential equations (13a) and (13b) with the corresponding boundary con-

ditions into a matrix equation
½Kme�½U� ¼ ½R� ð49Þ
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where ½Kme� is the stiffness matrix for deformation of the plate; ½U� is a column matrix of unknown nodal

values of the plate deformation; and ½R� is a column matrix of the load which is related to the magnetic

force. It should be noted that ½Kme� is a function of the deformation whereas ½R� is a function of the

magnetic and deformation fields, that is
½Kme� ¼ ½Kmeð½U�Þ�; ½R� ¼ ½Rð½Uð½U�Þ�Þ� ð50Þ
5.4. Iterative method

As shown in Eqs. (43), (44), and (48)–(50), the magneto-thermo-elastic problem for ferromagnetic plates

shows strong nonlinearity due to multi-field couplings. Here, the Newton–Raphson method is employed to
solve Eqs. (43) and (49). The iterative equation can be written as
½Umþ1� ¼ ½Um� � ½Kme
m ��1½Wð½Um�Þ� ð51Þ
where the subscripts m and mþ 1 denote the numbers of iteration, ½Wð½Um�Þ� is denoted by
½Wð½Um�Þ� ¼ ½Kmeð½Um�Þ�½Um� � ½Rð½Kemð½Um�Þ��1½P�; T Þ� ð52Þ
and ½Kme
m � is the tangent stiffness matrix is given by
½Kme
m � ¼ oWð½Um�Þ

o½U�

� �
ð53Þ
In view of the theory, once the tangent stiffness matrix, Eq. (53), is obtained, one can get the magneto-

elastic deformation of the ferromagnetic plate from Eq. (51). However, the tangent stiffness matrix ½Kme
m � is

not known a priori because the coupling between the magnetic force exerted on the plate and the defor-

mation of the plate is implicit. An iterative technique is adopted again to solve this nonlinear interaction

problem. Eq. (52) can be rewritten as
½Wð½Unþ1;n
m �Þ� ¼ ½Kmeð½Unþ1

m �Þ�½Unþ1
m � � ½Rð½Kemð½Un

m�Þ�
�1½P�; T Þ� ð54Þ
where the superscripts n and nþ 1 denote the numbers of iteration. Thus, we can rewrite Eq. (53) in the

form
½Kme
m �nþ1;n ¼

oWð½Unþ1;n
m �Þ

o½Unþ1�

� �
ð55Þ
Substituting of Eqs. (54) and (55) into Eq. (51) leads to
½Unþ1
mþ1� ¼ ½Unþ1

m � � ½Kme
m ��1

nþ1;n½Wð½Unþ1;n
m �Þ� ð56Þ
We repeat the calculation given by the above equation until the following conditions are satisfied:
kWð½Unþ1;n
m �Þk < e1; k½Unþ1

mþ1� � ½Unþ1
m �k < e2 ð57Þ
where 0 < e1 � 1 and 0 < e2 � 1 are the prescribed limits. Finally we obtain the magneto-thermo-elastic

deformation of the ferromagnetic plate under magnetic field B0 and thermal field T by
½U� ¼ lim
m;n!1

½Un
m� ð58Þ
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6. Numerical results and discussions

Some numerical examples are presented here to show the magneto-thermo-elastic behavior (viz.,

bending, buckling and post-buckling) of a rectangular ferromagnetic plate subjected to magnetic and
thermal fields (shown in Fig. 1). The geometric and material parameters are listed in Table 1.

We first consider a numerical example of a ferromagnetic plate with a prescribed thermal field. The

thermal boundary conditions are given by
Table

Geom

Len

0.1
T ¼ P cosðpy=bÞ; at x ¼ 0; T ¼ 0; at x ¼ a ð59aÞ
oT=oy ¼ 0; at y ¼ 0; b ð59bÞ
In this case, the thermal field distribution of the ferromagnetic plate is independent of the thickness of

the plate, that is, T ¼ T ðx; yÞ. Fig. 5 shows the maximum deflection of the plate vs. applied magnetic field B	
0

(dimensionless B	
0 ¼ B0=

ffiffiffiffiffiffiffiffi
l0Y

p � 104) for the selected temperature intensities. From the figure, one can find

that the magneto-thermo-elastic buckling takes place and its behavior is similar to the magneto-elastic

buckling where only the magnetic field is applied. When the applied magnetic-field intensity increases
beyond the critical value, the deflection of the plate increases along the post-buckling configuration and the

plate still has some load bearing capacity. Fig. 6 shows the critical magnetic fields as a function of the

thermal intensity P . One can see that the higher the thermal intensity the smaller the critical magnetic field,

as the increasing thermal intensity enhances the membrane stress in the plate. As shown in the figure, the

buckling value at P ¼ 200 �C is almost half of that at P ¼ 0 �C (without any thermal effect). Fig. 7 shows
1

etric and material parameters of ferromagnetic plate

gth, a (m) Width, b (m) Thickness, h (m) Young�s
modulus, Y (MPa)

Poisson�s
ratio, m

Relative

permeability, lr

Thermal

coefficient, a (1/�C)

0.1 0.001 1.2 · 105 0.3 1000 1.0· 10�5

 
o

  

 

 

 

 

Fig. 5. The curve of the maximum deflection vs. applied magnetic intensity (transverse magnetic field).



Fig. 6. The critical magnetic field of magneto-thermo-elastic buckling vs. thermal field (transverse magnetic field).

   

   

   

   

   

Fig. 7. The deflection curve of magneto-thermo-elastic bending (P ¼ 100 �C).
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the deflection of the plate at a point (x ¼ a=4, y ¼ b=2) as a function of the magnetic-field intensity for

several incident angles. One can see that the incident angle can significantly influence the magneto-thermo-

elastic behavior of the plate. As shown in the figure, the buckling takes place for a small incident angle

whereas the plate shows mostly bending for relatively large angles.

The second numerical example involves a prescribed thermal condition, in which the upper and lower
surfaces of the plate have different temperatures. The corresponding boundary conditions are given as

follows:
T ¼ T0 þ dT ; at z ¼ h=2; T ¼ T0; at z ¼ �h=2 ð60aÞ

k oT=oy ¼ HT ðT � T0Þ; at x ¼ 0; a and y ¼ 0; b ð60bÞ



 

 

 

δ

δ

δ

δ

δ

Fig. 8. The curve of the maximum deflection vs. applied magnetic-field intensity (transverse magnetic field).
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where T0 ¼ 20 �C is chosen for the reference temperature; the heat conduction coefficient k ¼ 10:0 W/m �C;
the radiative coefficient HT ¼ 0:1 W/m2 �C; and the thickness of plate h ¼ 0:002 m. Other geometric and

material parameters of the plate are the same as listed in Table 1. In addition, to study the effect of the

thermal field on the magnetization through the magneto-thermo-elastic interaction, two different magnetic

constitutive relations are used: (a) B ¼ l0lrH with lr ¼ 1000, and (b) B ¼ l0lrðT ÞH with lrðT Þ ¼ b1 þ b2T .
The case (a) is the usual linear, isotropic magnetization relation for ferromagnetic media and the case (b)

takes into account the effect of temperature on magnetization in which b1 ¼ 600 and b2 ¼ 20 (1/�C).
For a transverse magnetic field, the maximum deflection of the simply supported plate is plotted as a

function of the magnetic-field intensity in Fig. 8 for selected values of dT for case (a). One can find that the

plate buckles for zero or small temperature-difference of the plate (i.e., dT ¼ 0; 5, 10 �C), whereas the plate
exhibits bending only for large values of dT (i.e., dT ¼ 30, 50 �C). We next investigate the effects of

the magnetic-field incident angle and the magnetization relations on the mechanical behavior of the plate.
Fig. 9. The bending of the plate in an oblique magnetic field with a small incident angle (h ¼ 3:0�): (a) the deflection curve (dT ¼ 50 �C,
y ¼ b=2); (b) the deflection vs. magnetic field.



Fig. 10. The bending of the plate in an oblique magnetic field with a large incident angle (h ¼ 10:0�): (a) the deflection curve

(dT ¼ 50 �C, y ¼ b=2); (b) the deflection vs. magnetic field.
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Fig. 9(a) and (b) show the deflection curves in the middle of the plate (y ¼ b=2) and the deflection at a point
(x ¼ a=4, y ¼ b=2) respectively for a small oblique angle (i.e., h ¼ 3:0�). One can find that, from these

figures, there is not significant difference between the two cases of magnetization relations adopted. In this

case, the plate exhibits mostly thermo-elastic bending with the characteristic deflection of half-wave type

due to the temperature difference between the upper and lower surfaces of the plate. This also can be found

from Fig. 9(b) which exhibits similar behavior between the two constitutive relatives and that the bending

of the plate increases with the applied magnetic field B	
0 slowly, especially for the larger temperature dif-

ference (dT ¼ 200 �C). Now we carry out a similar analysis using a large incident angle (h ¼ 10:0�). Fig.
10(a) and (b) show the deflection curves at y ¼ b=2 and the deflection at a point (x ¼ a=4, y ¼ b=2) re-
spectively. The figures display a marked effect of the magnetization relations as well as the intensity of the

applied field on the bending of the plate. As shown in Fig. 10(a), the deflection curve is a half-wave type

(typical of thermo-elastic bending) for small applied magnetic fields but it becomes whole wave type (typical

of magneto-elastic bending in a oblique field, see Zheng et al., 1999) when the strong magnetic field is

applied. As shown in Fig. 10(b), the bending of the plate with magnetization relations (a) and (b) show

notable differences which become larger as the applied magnetic-field intensity increases.
7. Conclusions

For a soft ferromagnetic plate with geometrical nonlinearity and temperature-dependent magnetization,

a theoretical model for magneto-thermo-elastic boundary-value problem is developed based on a gener-
alized variational principle. The fundamental equations thus developed are nonlinear and coupled. By

adopting an appropriate linearization and magnetic field perturbation method, the magneto-thermo-elastic

buckling of a soft ferromagnetic rectangular plate with simple supports is analyzed. The magneto-thermo-

elastic stability regions and the critical field intensities which are dependent on the geometrical parameters

and applied magnetic or thermal field are obtained. A coupled nonlinear finite element program is deve-

loped to simulate the magneto-thermo-elastic behavior of ferromagnetic plates. The results show that the

plate subjected simultaneously to a transverse magnetic field and a thermal field buckles when the applied

magnetic field reaches a critical value and that the thermal field decreases the critical field. In the case where
the plate is subjected to an oblique magnetic fields, it buckles for a small incident angle while it exhibits
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mostly magneto-thermo-elastic bending for a larger incident angle. For larger incident angles and stronger

applied magnetic fields, the temperature-dependent magnetization effects markedly on the bending and

should be noted in the analysis of the plate in the multi-field interaction environment.
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