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Abstract

Based on a generalized variational principle for magneto-thermo-elasticity, a theoretical model is proposed to des-
cribe the coupled magneto-thermo-elastic interaction of soft ferromagnetic plates. Using the linearized theory of
magneto-elasticity and perturbation technique, we analyze the magneto-elastic and magneto-thermo-elastic instability
of simply supported ferromagnetic plates subjected to thermal and magnetic loadings. A coupled nonlinear finite
element procedure is developed next to simulate the magneto-thermo-elastic behavior of a ferromagnetic plate. The
effects of thermal and magnetic fields on the magneto-thermo-elastic bending and buckling is investigated in some
detail.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The classical thermo-elasticity of thin plates has been one of the most interesting fields of research (i.e.
Sokolnikoff, 1939; Biot, 1956; Green and Lindsay, 1972). Recently, some investigators gave their attention
to the magneto-thermo-elastic interaction in ferromagnetic plates as more ferromagnetic materials were
used in technological applications, such as the first wall structure of thermo-nuclear reactors, electro-
magnetic energy storage devices and ferromagnetic shields, etc. (Lee et al., 1993). Paria (1967) and Parkus
(1972) are the pioneers to study the field of magneto-thermo-elastic interaction. Misra et al. (1991) studied
the stress in a solid cylinder of electroconductive medium with an axial magnetic field and a ramp-type
thermal field. Banerjee and Roychoudhuri (1997) and Roychoudhuri and Banerjee (1998) investigated the
magneto-thermo-elastic behavior of an infinite elastic and viscoelastic cylinder under a periodic loading. It
should be noted that most of these studies are limited to a nonmagnetized medium.
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When the magnetization of medium is considered, the analysis of multi-field coupling becomes more
complex. Hutter and Pao (1974) developed the general theory of magneto-thermo-elastic bodies in applied
magnetic fields and further reduced the basic equations through linearization. With the aid of the method of
rational mechanics, Abd-alla and Maugin (1990) and Massalas (1991) respectively developed the equations
of nonlinear magneto-thermo-elasticity for ferromagnetic media. However, in most of the aforementioned
theories, the magnetic force arisen from the magnetization of a ferromagnetic medium is represented by the
Maxwell magnetic stress tensor. Zhou and Zheng (1997) pointed out that there exists a configuration for
which the usual Maxwell stress tensor may not be adequate for describing the magnetic force system of a
ferromagnetic medium subjected to complex applied magnetic fields for which both the positive and nega-
tive magnetic stiffness manifest. They suggested a magneto-elastic model using the generalized variational
principle to remedy the problem.

In this paper, we expand the generalized variational principle for magneto-elasticity to study the mag-
neto-thermo-elastic interaction of soft ferromagnetic bodies under the action of applied thermal and
magnetic fields. This expansion is achieved by using the magnetic energy and thermo-elastic free energy of
the soft ferromagnetic material. In contrast to existing models (e.g. Abd-alla and Maugin, 1990; Massalas,
1991) which are based on Maxwell magnetic stress tensor, a new theoretical model for magneto-thermo-
elastic interaction is proposed for soft ferromagnetic plates by taking geometrical nonlinearity and tem-
perature-dependent magnetization into account. By means of the magnetic field perturbation technique and
the finite element method, we analyze the interaction behavior of ferromagnetic plates in transverse
and oblique magnetic fields. The magneto-thermo-elastic bending, buckling and post-buckling of the soft
ferromagnetic plates are quantitatively investigated, and the effects of magnetic incident angle and tem-
perature on the instability of the plates are examined in some detail.

2. The generalized energy functional

Consider an isotropic, homogeneous, linear magneto-elastic plate made of soft ferromagnetic material in
both a stationary applied magnetic field By and a thermal field T'(x, y,z). The geometrical parameters of the
plate are denoted respectively as the length a, the width » and the thickness 4 (see Fig. 1). Considering the
dependence of the magnetic susceptibility or permeability on the thermal field (less than Curie temperature)
and assuming that there is no electric field, charge distribution, or conduction current, we can write the
magnetic constitutive relation for linear magnetic materials

M = y(T)H", B' = pou(T)H" in Q" (1)
M =0, B =yH inQ (2)

where Q" and Q represent the inside and outside regions of deformed plate respectively; M™ and M~ are
respectively the magnetization vectors inside and outside the ferromagnetic medium; B*,B~ and H" , H~
are respectively the inside and outside magnetic induction vectors and magnetic field vectors; y, and y, are
the magnetic permeability of vacuum and the relative permeability of ferromagnetic medium respectively;
% 1s the susceptibility of the ferromagnetic medium and y = u, — 1.

Taking u = {u, v, w} as the displacement vector of the plate and Sy as a closed surface far away from the
region occupied by the ferromagnetic plate, we write the magnetic energy functional for the system as
follows:

B s ] Cas [
,,{¢,u} —2/Q+(u> wott, (V™) dv—l—z/g(u) (Vo) dv—l—/son By¢ ds (3)
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Fig. 1. The scheme of rectangular ferromagnetic plate.

in which ¢ is the magnetic scalar potential which satisfies —V¢ = H; and V = 0/0xi + 0/0yj + 0/0zk is the
gradient operator.

With the assumptions that (i) all the elastic parameters are constants independent of the thermal field, (ii)
there are no external forces acting on the ferromagnetic plate, and (iii) the von Karman theory of geo-
metrically nonlinear thin plate may be used, the displacements of the thin plate can be expressed by the mid-
plane deformation in the following forms:

ow ow

Uy=u—z—, U=0—2z—,
dy

= Uz =w 4)

and the relations between the displacements and strains are given by

2
=gty (5) —o-m (s2)
duy 1 [ dus\’
e),za—y—i—z(@) =& —z, (5b)
ey :% (%’j+%+%%> =ty — 2y (5¢)
where
ar:aug(aw)z g:av+1<aw>2 o (B D ()
ox 2\ax /) Yoy 2\dy) 7 YT 2\9y ox ax oy

0w _ow 0w
/(x - axz ’ Xy - ayz ’ /ny - axay

Thus, the functional of the thermo-elastic free energy functional of the system is given by

,.{¢,u} = 1}, + I, + IT, (7)

me
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in which
1
Mo =3 [ Cllerta) +20 =), — 05)]ds (s0)
1
I, =5 / D(x, + 2,)* +2(1 = v) (22, — %) ds (8b)
S+
oY h)2 oY hy2
mw - / (6 + 5,) / (7 - Ty)dz|ds+ 7 [ (1 +2,) / (T — Ty)=dz| ds
1—v S+ —h/2 1 - St —h/2
CE h/2
_[2_T0+(1—v 1—2v]/s+ /h/ZT Ty)* d=ds (8¢)

Here, Y and v are respectively the Young’s modulus and the Poisson ratio; C = Yi/(1 —v*) and
D = Yr*/[12(1 — v?)] are the tensile and flexural rigidity of the thin plate, respectively; T is the reference
temperature; o is the coefficient of thermal expansion; Cr denotes the specific heat capacity; S™ denotes the
mid-plane of plate. By adding the magnetic energy functional and the thermo-elastic free energy, the total
generalized magneto-thermo-elastic energy functional of the system is obtained as follows:

H{¢au} = Hem{¢7u} +Hm€{¢7u} (9)
With the stationary thermal field, the functional of potential energy of heat flux can be expressed as
1 — 1
th{T} —/ |:2 (VT) —phTT:| dl)—/ [(;ulq—izHrT)T—E/leTTz ds (10)
Sp

where £ is the thermal conductivity of ferromagnetic material; p and A7 represent the material mass density
and heat source density, respectively; Hr is the radiative coefficient; A, and A, are respectively the factors of
heat flux and heat exchange on the boundary Sp; g and T are respectively the heat flux and environment
temperature on Sp.

3. The governing equations

Let 6¢ be the admissible variation on magnetic potential function of the system. Then
8¢ =08¢p" =8¢~ onS (11)

where S denotes the enclosed surface of the plate region Q*. From 8,I1{¢,u} = 0 and the arbitrariness of 3¢,
one can obtain the governing equations and boundary conditions for the ferromagnetic body as follows:

VipT =0 in Q' (u) (12a)
V¢~ =0 in Q (u) (12b)
LA
¢ =0, = ons (12¢)
—V¢~ = & on S (12d)
o

Analogously, we take ou as the admissible variation on the displacement of the plate and let
SulT{¢,u} = 0. With the arbitrariness of du and the similar variational calculus procedure following Zhou
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and Zheng (1997), we get the equilibrium equations and boundary conditions for a geometrically nonlinear

ferromagnetic plate as follows:

N Ny Ny N
ox oy 7 ox 0y
—2—2 2y
DV'V'w+ V(TTO)de<
—VJonp

The corresponding boundary conditions are

(A) In-plane deformation:
(i) Movable boundary:

N,=0 onTrl
(i) Immovable boundary:

u,=0 onl

(B) Bending deformation:
(1) Simply supported boundary:

w=0, M,=0 onl
(i) Fixed boundary:

=0, —=0 r
w=0, = on
(ii1) Free boundary:

M,=0, V,=0 onl

NXW+2NX_}’ ) :C]:m(xv% T)

(13a)

(13b)

(14a)

(14b)

(15a)

(15b)

(15¢)

where M, and ¥, are respectively the bending moment and shearing force on the boundary I with the
normal direction #n; N, and u, denote the projections of the mid-plane internal force and displacement in the
normal direction n on I', respectively; V = 9/0xi + 0/0yj is the 2D gradient operator; N,, N,, N,, and M,,
M,, M., represent membrane and bending stress resultants of the thin plate respectively and are defined by

Y [
Ny = C(ec + vsg,) — T /h/Z(T

Y h/2
N, = C(e, + ve,) — 10(_ . /h/Z(T

Ny = C(1 —v)ey,

aY  [?
M, = =D(y, +vy,) — - /h/2

4 h/2
My = =D(yy + V1) =7 / e

Mxy = _D(l - V)Xxy

— T)dz

~T)dz

(T - To)ZdZ

(T — Ty)zdz

(16a)

(16b)
(16¢c)

(17a)

(17b)

(17¢)
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and the equivalent magnetic force exerted on the plate is given by

(e 1) =BT oy - R, (18)
where H" and H represent respectively the normal and tangential components of H" on the surface S of
the ferromagnetic plate, which are related to the deformation of the plate and can be regarded as a
transformation from the magnetic energy to the mechanical energy of the system.

Here, it should be pointed out that, in our derivation process of this section, the effects of thermal flux
induced by magnetic field, temperature dependency of magnetic properties, and thermo-elastic coupling are
neglected with stationary magnetic and thermal fields assumed. Consequently, we can get the governing
equations directly from the potential energy functional of heat flux. Let 67 be the admissible variation on
the thermal functional of the system. Then, we have

0T =0 on Sr (19)

Therefore, from 811, {7} = 0 and the arbitrariness of 87, the governing equation of heat conduction and
boundary condition can be obtained as follows:

VT +phr =0 in QF (20a)
or ., _ . =
ke =hg+hHi(T-T) ons (20b)

4. Magneto-thermo-elastic buckling of ferromagnetic plates

The magneto-elastic buckling phenomenon of a soft ferromagnetic plate in transverse magnetic field
(60 = 0°) is known to us due to many investigations (e.g. Moon and Pao, 1968; Moon, 1984; Zhou et al.,
1995; Lee, 1996; Zhou and Miya, 1998; Zheng et al., 1999). Here, we pay our attention to the magneto-
thermo-elastic buckling of simply supported rectangular ferromagnetic plates under both the thermal and
magnetic fields. The following analyses are based on the model developed in the previous section. For the
sake of simplicity, the usual linear and infinitesimal strain theory for the ferromagnetic plate is adopted and
the magnetic susceptibility y is assumed independent of the thermal field. We also assume that the applied
thermal and magnetic fields are stationary and uniform. The four edges of the plate are assumed to be fixed.
By solving Eq. (13a), one can casily get the membrane stress resultants arisen from the thermal field as
follows:

oYTh oYTh
NX— 17\/’ NV_ 17‘)7 NW_O (21)
Note that we take reference temperature 7, = 0 for convenience.

A linearized theory (Pao and Yeh, 1973) is adopted for the distribution of the magnetic field inside and
outside of the ferromagnetic plate. The magnetic field is divided into two parts: the rigid body state and the
perturbed state. The former represents the magneto-statics solution for the undeformed plate and the latter
is an added correction due to a small deformation of the plate, that is

H' =H +h" = -V&" — Vo™ in Q" (u) (22a)

H =H, +h =-Vd — V¢  inQ (u) (22b)

By considering the geometric characteristics of a thin plate (i.e. #/a < 1, h/b < 1) and neglecting the
effect of the boundary magnetic field, we have



X. Wang et al. | International Journal of Solids and Structures 40 (2003) 6125-6142 6131

Vo' =0 in Q" (u=0) (23a)
Vo =0 inQ (u=0) (23b)
n _
ot =, ,urai:ai onz=+h/2 (23c)
0z 0z
_ By
—V& =— on S or at co (23d)
Ho

for the rigid body state and

VT =0 in Q' (u) (24a)
Vi~ =0 in Q (u) (24b)
84)+ ¢~
Uy =—— onz==h/2 (24c¢)
0z oz
GloN L Ow 6¢7 ow
—— — H,, =4h/2 24
Ox HOz ax ax + 0z a on z h/ ( d)
6q§+ L Oow aqﬁ ow
— =+h/2 24
o +H, > oy +H,, % on z / (24e)
¢ — 0 onS,orat oo (24f)

for the perturbed state. As a consequence of Egs. (23a)—(23d), we have

H = —Vo' = B in Q" (u=0) (25a)
Ho My
_ _ B .
H =-Vo =— inQ (u=0) (25b)
Ho
As for the plate deflection, a solution of the following form is chosen:
nmy
— 4 ol 26
w= ZZ m,,sm Y sin 5 (26)

where m and »n denote positive integers, and 4,,, is the coefficient of deflection amplitude. Upon substitution
of Egs. (25) and (26) into the corresponding boundary conditions of Egs. (24d) and (24e), the distribution
of the perturbed fields are given by

+ — _v¢+
BO/{ Amn mTm mmnx nmy 307 mn }’IT[ . mnx nmy
— cos— sin—— cosh(k,,,2)i sin—— cos ——
Moll Z A @ a b m Z a b

B kmnAmn
x cosh(kynz)j Dok Z Z sm@ sm? sinh(k,.,z)k (27a)
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SR
_ BoX Z Z xj:: % os@ sm? sinh (kzh) Ko (/2 ) Bo)/ Z Z A:: nm
X san cos? sinh (%) (/2= sgn Z Z k"’”A’”” n@ sin "Zy
x sinh (%)e’w“’/zﬂk (27b)
where sgn(z) is the sign function, and
kyn =T (%)2 + (g)z, Apn = 1, Si k";h coshk";h (28)

After taking the magnetic fields distributions of Egs. (25a), (25b), (27a), and (27b) into the equivalent
magnetic force of Eq. (18), we have

2B(2)/C kmnAmn . mnh mmnx . nmy
7 29
qz x,y) Lolts Em En Amn sin P sin b (29)

The equilibrium equation of Eq. (13b), upon substituting Egs. (21) and (29), is reduced to

232" 2
Z ZA’”" Dk* — 2807 Ko sinh Knih o XTh k2 sin % sin T _ g (30)
— — ‘mn luo.urAmn 2 1— ‘mn a b

It should be noted from the above equation that 4,,, = 0 or w = 0 when the applied magnetic field By and
thermal field 7 are small. This represents the unbending state as an equilibrium configuration for the
ferromagnetic plate. As the field By and/or T increase, however, there will be cases of 4,,, # 0 or w # 0
which represents the buckling of the plate.
Case I. T = 0 and By # 0. In this case, the ferromagnetic plate is placed in an applied magnetic field only.
From Eq. (30), we find
. 2B 7 kinn

mn

kmnh
inh
IuO:urAmn - 2

Thus, the critical magnetic field for magneto-elastic buckling (m = n = 1) is obtained as

-0 (31)

1/2
tott A 70 /

24(1 — 222 sinh(ky /2)

Boer = [+ (a/b)"T (a/m) " (32)

Noting that the magnetic permeability of most soft ferromagnetic materials is very large (e.g., y > 10*
for iron) and the assumption of thin plate
ﬂr%}(>> 1, Slnh(kllh/z) %k“h/2<< 17 COSh(kllh/Z) ~ 1 (33)

Using the above relations, Eq. (32) is further reduced in nondimensional form

n n 2 213/4 -3/2
Ba= =3 gy | o (34)

which shows that the critical magnetic field B, varies with —3/2 power of the geometric parameter a/#.
It agrees with the Moon and Pao (1968) and Dalamangas (1983).

Case II: T # 0 and By = 0. In this case, the ferromagnetic plate is placed in an applied thermal field only.
From Eq. (30), we find
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— k=0 (35)

and the critical value of thermal field (dimensionless) for the thermo-elastic buckling is obtained by

7'[2

12(1+v)

Case III: T # 0 and By # 0. The ferromagnetic plate is placed in both the applied thermal field and
magnetic field. In this case, we obtain the effect of the thermal field on the critical magnetic field for
magneto-elastic buckling, and the effect of the magnetic field on the critical thermal field for thermo-elastic
buckling as follows:

Ty =aly = [+ (a/b)*)(a/h)”> (36)

i h nhT V? 2174
Ber = 24(1 —v)d® {2(1 — v)a] [+ a/o) T o)
2 L 2(1-v)(B) a

T, = 20+ [1+ (a/b)’)(a/h) (37b)

m\/1+ (a/b)? h

and the characteristic curve of magneto-thermo-elastic buckling for the ferromagnetic plate as follows:

B\ T
-1 38
(Bér> T G8)
where B* and T* are the dimensionless variables of magnetic and thermal field, respectively. The corre-
sponding deflected configuration of the magneto-thermo-elastic buckling is expressed as

. TX . Ty
= A, sin— sin— 39

w 11 S1 p 1n b ( )
The logarithmic curves for critical values of magneto-elastic and thermo-elastic buckling of the simply

supported plate are plotted as a function of the geometrical parameter a/k in Fig. 2(a) and (b) respectively.

(a)
2 §
1x10° [ 1x10
‘mb I *i_a
- === ab=10 IR \
— —-a/b=20 N
a/b=3.0 N
', 1x10™
1x10° - MR B 1 1
100 100
a/h a/h

Fig. 2. The logarithmic curve for critical value vs. the geometric parameter a/h: (a) magneto-elastic buckling; (b) thermo-elastic
buckling.
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F(b) ]
L@ a/h=50
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4x10° TS
3x10* ~
@ t s T
l_ ; s ~
2x10° 1x10" | . N
.
3 N [ . I . I . I . I
, 1 , 1 , . ] ] ]
0 3 3 3 3
0.0 2.0x10™" 2.0x10™ 1x10 3x10 4x10 6x10
T B

Fig. 3. The buckling of magneto-elasticity and thermo-elasticity depending on thermal and magnetic field (a/b = 1.0): (a) the effect of
T* on B; (b) the effect of B* on T.

cr?

These show that the critical values for magneto-elastic buckling decrease with —3/2 power of the ratios
a/h, while those for thermo-elastic buckling decrease with —2 power of the ratios a/h. Fig. 3(a) shows
the effect of the thermal field on the magneto-elastic buckling while Fig. 3(b) shows the effect of magnetic
field on the thermo-elastic buckling. Fig. 4 presents further the characteristic curve of magneto-thermo-
elastic buckling where B;, and T, denote the critical magnetic and thermal field respectively for the plate
subjected to a magnetic or thermal field only. In the figure, the region enclosed by the characteristic
curve and the ordinate implies the stable region where the magneto-thermo-elastic buckling would not take
place.

1.0

0.5
Unstable

5 007 Stable
m
5 I
-05
1.0 1 | 1 | 1 |
0.0 0.5 1.0 1.5

T

cr

Fig. 4. The characteristic curve of magneto-thermo-elastic buckling.
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5. The finite element analysis

In general, it is not easy to obtain analytical solutions to a magneto-thermo-elastic problem with
combined fields since the field equations are strongly coupled and nonlinear due to the interactions among
the fields. The exact solution or quantitative analysis is limited to structures of simple geometry and simple
support conditions where the edge effect of magnetic field can be neglected. However, there are many
ferromagnetic structures of finite size with complex field configuration in engineering applications, thereby
necessitating a numerical means. In this section, we develop a numerical program based on the finite ele-
ment method to analyze the elastic, magnetic, and thermal field distributions of the plate. An iterative
method is employed to take care of the nonlinearities arisen from the field-structure interaction.

5.1. FEM formulation for magnetic field

Firstly, we will analyze the magnetic field distributions in regions Q" and Q that are influenced by the
magnetization and deformation of the ferromagnetic plate. For a given deflected state of the ferromagnetic
plate, the magnetic field distribution (solution of Egs. (12a)—(12d)) minimizes the magnetic-energy func-
tional I1,,{¢,u} for the ferromagnetic system. We discretize the 3D regions of Q% and @~ into finite
elements setting the mid-plane and the surface of the plate located on the surface of the elements. Here, we
adopt 20-node hexahedron elements and the corresponding shape function [N“"(x, y,z)],. For each element,
we have

b(x,,2) = [N"(x,2,2)L[®], (40)

where [®@], is a column matrix which consists of the value of ¢(x,y,z) on each node of the element e. Upon
substituting Eq. (40) into the discretized form of magnetic energy for the system, we have

Mou{u} = 3 S @7 0], — 5[] [P) @)

where [K”"], and [P], are respectively the magnetic stiffness matrix and the inhomogeneous term for element
e, and are expressed as

[Kem] _ er Holy [VNem];F[VNem]edU Qe S .Q+ (ll) (42a)
¢ Jo, Ho[VN"J[VN"],dv Q. € Q (u)
em1T
[P]e — {gse Hol - BO[N ]e ds ge ;gﬁ (42b)

From 8411..,{u, ¢} = 0, one can get the algebraic equation for magnetic scalar potential in the form

[K)[@] = [P] (43)

Here, [K®"] is the global magnetic stiffness matrix; [®] is a column matrix of the unknown nodal values of
the magnetic potential; [P] is the column matrix or “force” vector related to the applied magnetic field on
Sp. Since the region Q" (u) represents the deformed plate and the magnetic permeability is a function of the
thermal field, it is obvious that

K] = [K*"(u, T)] (44)
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5.2. FEM formulation for thermal field

Here, we develop a finite element formulation to compute the thermal field. The heat conduction
equation together with the corresponding boundary conditions, Egs. (20a) and (20b), constitute a
boundary-value problem that minimizes the potential functional of heat flux of the system. The magnetic
field elements in region Q" can be taken as the thermal field elements with the temperature function instead
of the magnetic scalar potential as the unknown values at the nodes of each element. The temperature for
each element is given by

T(x,y,z) = [Nth(x7yvz)]e[T}e (45)

in which [N”(x,y,z)], is the shape function of the thermal field element e; and [T], is the column matrix
which consists of the value of T(x,y,z) at each node.
Substituting Eq. (45) into the discretized form of the thermal flux potential for the system leads to

147} = 5 SR, SOTQ)), — 5 SO, + Yo, (46)
e e e 1)
where e and ¢, represent the thermal field elements inside and on the boundary of the plate, respectively;
[K!], is the heat conduction stiffness matrix; [K”], is the thermal stiffness matrix due to the heat exchange on
the boundary Sp; and [Q,], and [Q,], are respectively the inhomogeneous terms from the heat source
loading inside the plate and the heat flux and the heat exchange on the boundary. These matrices can be
written as follows:

K], = /Q ) k[VN"]T[VN"] dv (47a)
K= [ NN ds (470)
Q- | o1 e (47¢)
Q)= [ (a2t TN s (47d)

From 811,{T} = 0, a matrix equation for the thermal field may be obtained as

K" (u)][T] = [Q(u)] (48)

where [K”(u)] is the global heat conduction stiffness matrix; [T] is the column matrix which consists of the
temperature values at the nodes; and [Q(u)] is the column matrix related to the heat source, heat flux and
heat exchange.

5.3. FEM formulation for plate

Taking the rectangular areas of the 3D hexahedron elements in the mid-plane of plates as the plate
elements, we can reduce the differential equations (13a) and (13b) with the corresponding boundary con-
ditions into a matrix equation

[K™][U] = [R] (49)
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where [K"] is the stiffness matrix for deformation of the plate; [U] is a column matrix of unknown nodal
values of the plate deformation; and [R] is a column matrix of the load which is related to the magnetic
force. It should be noted that [K™] is a function of the deformation whereas [R] is a function of the
magnetic and deformation fields, that is

K™ = [K™([U])], [R] = [R([@([U])])] (50)

5.4. Iterative method

As shown in Eqs. (43), (44), and (48)—(50), the magneto-thermo-elastic problem for ferromagnetic plates
shows strong nonlinearity due to multi-field couplings. Here, the Newton—Raphson method is employed to
solve Egs. (43) and (49). The iterative equation can be written as

> >meq —

[Unt] = [Un] = K] [¥([U))] (51)
where the subscripts m and m + 1 denote the numbers of iteration, [¥([U,])] is denoted by
(¥ ([U,])] = K™ (U,])][U,] — [ROK([U,])] '[P, T)] (52)

and [K), ] is the tangent stiffness matrix is given by

e [O¥([U,])
K| = [W} (53)

In view of the theory, once the tangent stiffness matrix, Eq. (53), is obtained, one can get the magneto-
elastic deformation of the ferromagnetic plate from Eq. (51). However, the tangent stiffness matrix [K:e] is
not known a priori because the coupling between the magnetic force exerted on the plate and the defor-
mation of the plate is implicit. An iterative technique is adopted again to solve this nonlinear interaction
problem. Eq. (52) can be rewritten as

(¥ (U, )] = K™([U, DIV, ] — RK (U,)] '[P, 7)) (54)
where the superscripts #n and n + 1 denote the numbers of iteration. Thus, we can rewrite Eq. (53) in the
form

e Q¥ (UL

Ky L = Ut (55)

Substituting of Egs. (54) and (55) into Eq. (51) leads to
U] = (U] = KL LU ) (56)

We repeat the calculation given by the above equation until the following conditions are satisfied:

(O DI < e, I1054] = 0] < e (57)

m+1

where 0 < &y < 1 and 0 < & < 1 are the prescribed limits. Finally we obtain the magneto-thermo-elastic
deformation of the ferromagnetic plate under magnetic field By and thermal field 7 by

U] = lim [U}] (58)

m,n— o0
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6. Numerical results and discussions

Some numerical examples are presented here to show the magneto-thermo-elastic behavior (viz.,
bending, buckling and post-buckling) of a rectangular ferromagnetic plate subjected to magnetic and
thermal fields (shown in Fig. 1). The geometric and material parameters are listed in Table 1.

We first consider a numerical example of a ferromagnetic plate with a prescribed thermal field. The
thermal boundary conditions are given by

T = Pcos(ny/b), atx=0; T'=0, atx=a (59a)

oT/oy=0, aty=0,b (59b)

In this case, the thermal field distribution of the ferromagnetic plate is independent of the thickness of
the plate, thatis, I = T'(x, y). Fig. 5 shows the maximum deflection of the plate vs. applied magnetic field B;
(dimensionless B = By/+/1,Y x 10%) for the selected temperature intensities. From the figure, one can find
that the magneto-thermo-elastic buckling takes place and its behavior is similar to the magneto-elastic
buckling where only the magnetic field is applied. When the applied magnetic-field intensity increases
beyond the critical value, the deflection of the plate increases along the post-buckling configuration and the
plate still has some load bearing capacity. Fig. 6 shows the critical magnetic fields as a function of the
thermal intensity P. One can see that the higher the thermal intensity the smaller the critical magnetic field,
as the increasing thermal intensity enhances the membrane stress in the plate. As shown in the figure, the
buckling value at P = 200 °C is almost half of that at P = 0 °C (without any thermal effect). Fig. 7 shows

Table 1
Geometric and material parameters of ferromagnetic plate
Length, @ (m) Width, » (m) Thickness, # (m) Young’s Poisson’s Relative Thermal
modulus, ¥ (MPa) ratio, v permeability, p,  coefficient, o (1/°C)
0.1 0.1 0.001 1.2x10° 0.3 1000 1.0x1073

10 20 30
-

Fig. 5. The curve of the maximum deflection vs. applied magnetic intensity (transverse magnetic field).
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Fig. 6. The critical magnetic field of magneto-thermo-elastic buckling vs. thermal field (transverse magnetic field).

Fig. 7. The deflection curve of magneto-thermo-elastic bending (P = 100 °C).

the deflection of the plate at a point (x = a/4, y = b/2) as a function of the magnetic-field intensity for
several incident angles. One can see that the incident angle can significantly influence the magneto-thermo-
elastic behavior of the plate. As shown in the figure, the buckling takes place for a small incident angle
whereas the plate shows mostly bending for relatively large angles.

The second numerical example involves a prescribed thermal condition, in which the upper and lower
surfaces of the plate have different temperatures. The corresponding boundary conditions are given as
follows:

T=Ty+0T, atz=h/2; T=T, atz=-—h/2 (60a)

k0T /0y =Hr(T—T,), atx=0,a and y=0,b (60b)
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L | —=—3§T=0°C
—A—§T=5C
067 | 5 sr-10C
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0.0 ®— - —
, | , | , | ,

Fig. 8. The curve of the maximum deflection vs. applied magnetic-field intensity (transverse magnetic field).

where T, = 20 °C is chosen for the reference temperature; the heat conduction coefficient £ = 10.0 W/m °C,;
the radiative coefficient H; = 0.1 W/m?°C; and the thickness of plate # = 0.002 m. Other geometric and
material parameters of the plate are the same as listed in Table 1. In addition, to study the effect of the
thermal field on the magnetization through the magneto-thermo-elastic interaction, two different magnetic
constitutive relations are used: (a) B = uyuH with g, = 1000, and (b) B = pop, (T)H with u.(T) = B, + ,T.
The case (a) is the usual linear, isotropic magnetization relation for ferromagnetic media and the case (b)
takes into account the effect of temperature on magnetization in which ; = 600 and f, = 20 (1/°C).

For a transverse magnetic field, the maximum deflection of the simply supported plate is plotted as a
function of the magnetic-field intensity in Fig. 8 for selected values of 37 for case (a). One can find that the
plate buckles for zero or small temperature-difference of the plate (i.e., 37 = 0, 5, 10 °C), whereas the plate
exhibits bending only for large values of 87 (i.e., 87 = 30, 50 °C). We next investigate the effects of
the magnetic-field incident angle and the magnetization relations on the mechanical behavior of the plate.

—m—5T=50"C(a)
—o—5T=50C (b)
8L —v—5T=100°C (a)
M ——5T=100C (b)
- —&—5T=200"C (a)
(b)

04

(a)

—0—B,=1288 (b) 08
(a)
(b)

—o—5T=200"C (b

o 06
< =
= L
0.2 T
0.4
0.2 M
. . . . T 1 | L | L
00— : : : : 0 20 40 60
0.0 0.2 0.4 0.6 0.8 1.0 M
(a) x/a (b) Bo

Fig. 9. The bending of the plate in an oblique magnetic field with a small incident angle (6 = 3.0°): (a) the deflection curve (867 = 50 °C,
v = b/2); (b) the deflection vs. magnetic field.
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—=— 5T=50°C (a)
15+ —0—§T=50°C (b)
—¥—5T=100"°C (a)
—v—5T=100°C (b

)
10k ——5T=200°C (a)
—0—§T=200 °C (b)
<
Bl ;’%
00k %
-0.0 s | s | s | s | s |
-0.5 + L . L
0.0 0.2 0.4 0.6 0.8 1.0 0 20 40
(a) x/a (b) B,

Fig. 10. The bending of the plate in an oblique magnetic field with a large incident angle (0 = 10.0°): (a) the deflection curve
(87 =50 °C, y = b/2); (b) the deflection vs. magnetic field.

Fig. 9(a) and (b) show the deflection curves in the middle of the plate (y = b/2) and the deflection at a point
(x =a/4, y = b/2) respectively for a small oblique angle (i.e., # = 3.0°). One can find that, from these
figures, there is not significant difference between the two cases of magnetization relations adopted. In this
case, the plate exhibits mostly thermo-elastic bending with the characteristic deflection of half-wave type
due to the temperature difference between the upper and lower surfaces of the plate. This also can be found
from Fig. 9(b) which exhibits similar behavior between the two constitutive relatives and that the bending
of the plate increases with the applied magnetic field B; slowly, especially for the larger temperature dif-
ference (87 = 200 °C). Now we carry out a similar analysis using a large incident angle (0 = 10.0°). Fig.
10(a) and (b) show the deflection curves at y = b/2 and the deflection at a point (x = a/4, y = b/2) re-
spectively. The figures display a marked effect of the magnetization relations as well as the intensity of the
applied field on the bending of the plate. As shown in Fig. 10(a), the deflection curve is a half-wave type
(typical of thermo-elastic bending) for small applied magnetic fields but it becomes whole wave type (typical
of magneto-elastic bending in a oblique field, see Zheng et al., 1999) when the strong magnetic field is
applied. As shown in Fig. 10(b), the bending of the plate with magnetization relations (a) and (b) show
notable differences which become larger as the applied magnetic-field intensity increases.

7. Conclusions

For a soft ferromagnetic plate with geometrical nonlinearity and temperature-dependent magnetization,
a theoretical model for magneto-thermo-elastic boundary-value problem is developed based on a gener-
alized variational principle. The fundamental equations thus developed are nonlinear and coupled. By
adopting an appropriate linearization and magnetic field perturbation method, the magneto-thermo-elastic
buckling of a soft ferromagnetic rectangular plate with simple supports is analyzed. The magneto-thermo-
elastic stability regions and the critical field intensities which are dependent on the geometrical parameters
and applied magnetic or thermal field are obtained. A coupled nonlinear finite element program is deve-
loped to simulate the magneto-thermo-elastic behavior of ferromagnetic plates. The results show that the
plate subjected simultaneously to a transverse magnetic field and a thermal field buckles when the applied
magnetic field reaches a critical value and that the thermal field decreases the critical field. In the case where
the plate is subjected to an oblique magnetic fields, it buckles for a small incident angle while it exhibits
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mostly magneto-thermo-elastic bending for a larger incident angle. For larger incident angles and stronger
applied magnetic fields, the temperature-dependent magnetization effects markedly on the bending and
should be noted in the analysis of the plate in the multi-field interaction environment.
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